Transfer and Multi-Task Learning in Natural Language Processing

AILC summer school 2023, Pisa

Barbara Plank Chair for AI and Computational Linguistics, MaiNLP lab, Center for Information and Language Processing (CIS), LMU München & NLPnorth lab, ITU Copenhagen

np

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Associazione Italiana di Linguistica Computazionale

IT UNIVERSITY OF COPENHAGEN

"We have millions of labeled data instances"

Very unlikely the case, especially for NLP.

D/: {<x,y>}

The Motivation: Data scarcity

Learning from limited labeled data

unlabeled data $D_u: \{<x>\}$

X sparsity

labeled data D_l: {<x,y>}

all available data

Many languages are poorly resourced

Despite of the richness of language, we constantly face the scarceness of data: Need to tackle the "long tail"

Ultimate Goal: NLP for everyone

. . .

Languages used on the Internet

	blog	M Yc	ou Tube		
10%	20%	30%	40%	50%	

Genre/domains

5

What to do about it?

Typical setup: Learn a task at a time

Starting from scratch: No transfer of knowledge

Transfer Learning (TL)

Leverage knowledge gained to help solve a related problem

Transfer Learning

9

Why Transfer Learning?

It is all about language variation & out-of distribution learning

How do we make sure everyone is understood?

Language

11

English

Faroese

social media spoken poetry books Faroese wiki news

> medical academic

Language Variation

Performance +

Sekine (1997); Gildea (2001); Plank (2011); Ramesh Kashyap et al. (2021) Biber (1988); Karlgren and Cutting (1994); Biber (1995); Lee (2001)

typology domain genre topic register social context

What this tutorial is (not) about

- An overview of early and recent approaches to TL in NLP. This tutorial is not exhaustive. Pre-training (vanilla, multilingual, continuous)
- - Data selection (select data that matches the target)
 - Subspaces and Performance Prediction (investigate representations for transfer)
 - Multi-task Learning (use information from other tasks)
 - Data augmentation (modify labeled data to create class-preserving labeled data)
 - Semi-supervised learning (label from labeled and unlabelled data)
 - Zero-shot/few-shot learning (use no/few labeled instances or instructing tuning)
 - Active learning (select data to give to an annotator), Knowledge distillation (use a teacher to label the data), ...

What this tutorial is (not) about

- An overview of early and recent approaches to TL in NLP. This tutorial is not exhaustive.
 - Pre-training (vanilla, multilingual, continuous strategies)
 - Data selection (select data that matches the target)
 - Subspaces and Performance Prediction (investigate representations for transfer)
 - Multi-task Learning (use information from other tasks)
 - Data augmentation (modify labeled data to create class-preserving labeled data)
 - Semi-supervised learning (label from labeled and unlabelled data)
 - Zero-shot/few-shot learning (use no/few labeled instances or instructing tuning)
 - Active learning (select data to give to an annotator), Knowledge distillation (use a teacher to label the data), ...

What this tutorial is (not) about

- An overview of early and recent app
 - Pre-training (vanilla, multilingual,
 - Data selection (select data that r
 - Subspaces and Performance Pred
 - Multi-task Learning (use information
 - Data augmentation (me

T5

Diyi Yang Georgia Tech

)ele

- Semi-supervised learning (label from lak
- Zero-shot/few-shot learning (
- Active learning (select data to give to an a teacher to label the data), ...

Less Data, More ___? Data Augmentation and Semi-Supervised Learning for Natural Language Processing

> Diyi Yang, Georgia Tech Ankur P. Parikh, Google Research Colin Raffel, University of North Carolina, Chapel Hill

utorial is not exhaustive.

9

Colin Raffel UNC-Chapel Hill

erving labeled data)

Zero- and Few-Shot NLP with Pretrained Language Models

Iz Beltagy, Arman Cohan, Robert L. Logan IV, Sewon Min, Sameer Singh

Ankur Parikh

Google

ng)

use a

Outline

- Introduction: Why Transfer? Dimensions of Language Variation
- Part 1: What is Transfer Learning?
 - Three views on Transfer Learning, Related Learning Strategies
- Part 2: A type of TL: What is Multi-Task Learning?
 - What and Why, Perspectives on MTL
 - Short hands-on tutorial with MaChAmp
- Part 3: Selected Case Studies
 - Applications to Multilinguality, Transferability Estimation, Human Label Variation
- Outro

Part 1: What is Transfer Learning?

Views on Transfer Learning, Related Learning Strategies

Transfer Learning (TL)

Leverage knowledge gained to help solve a related problem

Today's typical Transfer Learning (TL) setup = Sequential Transfer Learning

Learn on one dataset / task, then transfer to another dataset / task

Classification,

Is this all there is to TL? No.

Sequential TL is just one (narrow) view on transfer learning. TL is broader

Three views on Transfer Learning

Data domain $\mathcal{D} = \{\mathcal{X}, P(\mathcal{X})\}$ with \mathcal{X} the feature space

~ Notation ~

Task $\mathcal{T} = \{\mathcal{Y}, P(\mathcal{Y}|\mathcal{X})\}$ where \mathcal{Y} is the label space

Types of Transfer Learning - View 1/3: Kind of tasks, data, timing

Adapted from Pan et al., (2009) & Ruder (2019)

Cross-domain learning (domain shift/covariate shift)

Cross-lingual learning

 $P(\mathcal{X}_{src}) \neq P(\mathcal{X}_{trq})$

 $\mathcal{X}_{src} \neq \mathcal{X}_{trq}$

Multi-task learning (MTL) $\mathcal{Y}_{src} \neq \mathcal{Y}_{trg}$

Sequential Transfer Learning

 $P(\mathcal{X}_{src}) \neq P(\mathcal{X}_{trg})$ $\mathcal{Y}_{src} \neq \mathcal{Y}_{trg}$

27

Types of Transfer Learning - View 2/3: Availability of resources

Few-shot fine-tuning, instruction tuning

In-context learning, (conditioning via prompts)

Multi-task learning, Weak supervision

... Pre-training, Semi-supervised learning etc

Types of Transfer Learning - View 3/3: How to cross the gulf

CROSS-LINGUAL

- **CROSS-DOMAIN**
 - **MULTI-TASK**
- **FORTUITOUS/INCIDENTAL SUPERVISION**

TL is finding smart ways to <u>re-use</u> {knowledge, data, models...} for the purpose of generalisation

Related learning paradigms

Supervised Learning

Slide by Beltagy et al., ACL 2022 tutorial

Related learning paradigms

Semi-Supervised Learning

Slide by Beltagy et al., ACL 2022 tutorial

Sequential Transfer Learning -Approaches (incl. a short history)

Transfer Learning (TL) via pre-training I: Feature extraction (e.g. ELMo)

Peters et al. (2018)

Feature Extraction

Classification, Structured Prediction, Question Answering,...

extract ELMo representation,

freeze

o on, Train on task B Applies to other word representations (word2vec, Glove, BERT...)

Transfer Learning (TL) via pre-training II: Fine Tuning (e.g. ULMFiT, BERT)

Howard & Ruder (2018); Peters et al., (2018)

Sequential Transfer Learning (TL) - Problems and Solutions

Howard & Ruder (2018), Radford et al. (2018)

- A common problem of fine-tuning is that retraining the model can mean to loose information about the general pre-training data ("catastrophic forgetting")
 - To address this, in **gradual unfreezing** the model will be trained in steps, starting by the last layer. So all layers are first frozen except the last one. In every step an additional layer is "unfrozen"
- Learning a large model can be **unstable**
 - First increase learning rate, then decrease it (slanted triangular learning rate)
- From biLSTMs to **transformers**
 - While first models use LSTMs (Howard & Ruder, 2018), GPT (Radford et al., 2018) used a transformer architecture in early GPT

Full-fine tuning: Further Issues

- Standard fine-tuning updates all LM parameters
 - Prone to overfitting and catastrophic forgetting
 - Practically may be too expensive
- A solution:
 - Modularity adapters

Full-fine tuning limitations. Solution: Adapters

(Houlsby et al., 2019; Pfeiffer et al., 2020)

Adapters: Modular Adaptation

(Houlsby et al., 2019; Pfeiffer et al., 2020)

Adapters: small modules inserted into transformer layers for efficient fine-tuning

Classification, Structured Prediction,

Adapters: Modular Adaptation

(Houlsby et al., 2019; Pfeiffer et al., 2020; Üstün et al., 2022)

- Adapters learn transformations to adapt a base model to a target task
- Encapsulate knowledge in a modular way
- Do adapters work?

Parameter-Efficient Transfer Learning for NLP

	Total num params	Trained params / task	CoLA	SST	MRPC	STS-B	QQP	MNLI _m	MNLI _{mm}	QNLI	RTE	Total
BERTLARGE	9.0×	100%	60.5	94.9	89.3	87.6	72.1	86.7	85.9	91.1	70.1	80.4
Adapters (8-256)	1.3 imes	3.6%	59.5	94.0	89.5	86.9	71.8	84.9	85.1	90.7	71.5	80.0
Adapters (64)	$1.2 \times$	2.1%	56.9	94.2	89.6	87.3	71.8	85.3	84.6	91.4	68.8	79.6

Adapters are trained separately. Limitation: No sharing between different tasks

A snapshot of NLP history - Act in 4 Epochs

1980s

2018

Are Language Models truly universal?

Motivation

Multilingual Language Models (e.g., mBERT, XLM-R)

The easiest way to do transfer learning across languages is via the representations

Classification, Structured Prediction, Question Answering,...

On the limitations of zero-shot TL with Multilingual Transformers

Lauscher et al., 2020; Conneau et al., 2020

Zero-shot performs poorly to distant languages *and* languages with smaller pre-training corpus sizes

Task	Model	EN	$\frac{\mathbf{z}\mathbf{H}}{\Delta}$	$\frac{\mathrm{TR}}{\Delta}$	${}^{ m RU}_{\Delta}$	аr Д	$HI \Delta$	eu Δ	FI Д	$rac{\mathrm{HE}}{\Delta}$	${}^{\rm IT}$	Jа Д	ко Д	${sv} \Delta$	$v_{I} \Delta$	$\frac{TH}{\Delta}$	es Δ	EL Д	de Δ	\mathbf{FR}	BG Δ	$\frac{sw}{\Delta}$	ur Δ
DEP	B X	91.2 92.0	-43.9 -85.4	-46.0 -44.2	-28.1 -29.7	-56.4 -54.6	-36.1 -39	-50.2 -49.5	-30.7 -26.7	-36.1 -39	-17.1 -23.5	-60.1 -80.5	-56.1 -56.0	-14.3 -16.3	-	-	-	-	-	- -	-	-	-
POS	B X	95.8 96.3	-38.0 -69.2	-35.9 -27.7	-16.0 -14.3	-40.1 -37.1	-33.4 -27.3	-34.6 -31.9	-21.9 -17.9	-33.4 -27.3	-19.8 -19.0	-46.1 -77.0	-42.0 -37.3	-9.6 -10.7	-	-	-	-	-	-	-	-	-
NER	B X	92.4 91.6	-23.3 -34.8	-11.6 -6.2	-10.7 -13.7	-31.7 -24.6	-11.1 -16.5	-12.8 -8.0	-3.8 -0.9	-11.1 -16.5	-2.6 -2.4	-25.7 -30.1	-13.8 -15.6	-6.7 -2.2	-	-	-	-	-	-	-	-	-
XNLI	B X	82.8 84.3	-13.6 -11.0	-20.6 -11.3	-13.5 -9.0	-17.3 -13.0	-21.3 -14.2	-	-	-	-	-	-	-	-11.9 -9.7	-28.1 -12.3	-8.1 -5.8	-14.1 -8.9	-10.5 -7.8	-7.8 -6.1	-13.3 -6.6	-33.0 -20.2	-23.4 -17.3
XQuAD	B X	71.1 72.5	-22.9 - 26.2	-34.2 -18.7	-19.2 -15.4	-24.7 -24.1	-28.6 -22.8	-	-	-	-	-	-	-	-22.1 -19.7	-43.2 -14.8	-16.6 -14.5	-28.2 -15.7	-14.8 -16.2	- -	-	-	-

Table 1: Zero-shot cross-lingual transfer performance on five tasks (DEP, POS, NER, XNLI, and XQuAD) with mBERT (B) and XLM-R (X). We show the monolingual EN performance and report drops in performance relative to EN for all target languages. Numbers in bold indicate the largest zero-shot performance drops for each task.

Domains

Large Language Models and Pre-training Domains

What does training on trillions of tokens afford us in terms of generalisation even within English? (Gururangan et al., 2020)

Large Language Models and Pre-training Domains

What does training on trillions of tokens afford us in terms of generalisation even within English? (Gururangan et al., 2020)

Monolingual data Roberta: 2.2T tokens

What is in a domain?

Social factors

Genre A manifold in a highdimensional "variety raining Domain **space**" (Plank, 2016) News RoBERTa Vikipedia \sim STORIES \bigcirc BooksCorpus **OpenWebText**

51

Don't Stop Pre-Training: Adapt Language Models to Domains and Tasks

(Gururangan et al., 2020)

Continuous pre-training on target domain data helps (Domain-adaptive pre-training; DAPT)

Domain	Task	RoBERTa	DAPT
Biomed	ChemProt	81.9	84.2
CS	ACL-ARC	63.0	75.4
News	HyperPart	86.6	88.2
Reviews	IMDB	95.0	95.4

* See paper for more experiments!

Supervised fine-tuning

Related recent work: Task Vectors - aka Post-hoc model intervention

(Ilharco, Riberio, Wortsmann, Gururangan et al., 2023)

- Motivation: pre-trained models are a commonly used backbone
- In practice, we often want to edit the models after pre-training to improve on downstream tasks
- Task vector: difference vector of weights of a model fine-tuned on a task, minus pretrained weights
 - Allows task arithmetics (negation for forgetting)

Related recent work: Task Vectors - aka Post-hoc model intervention

(Ilharco, Riberio, Wortsmann, Gururangan et al., 2023)

Example: Making Language Models less toxic

Method	% toxic generations (\downarrow)	Avg. toxicity score (\downarrow)	WikiText-103 perplexity (↓)
Pre-trained	4.8	0.06	16.4
Fine-tuned	57	0.56	16.6
Gradient ascent	0.0	0.45	$>10^{10}$
Fine-tuned on non-toxic	1.8	0.03	17.2
Random vector	4.8	0.06	16.4
Negative task vector	0.8	0.01	16.9

Outline

- Introduction: Why Transfer? Dimensions of Language Variation
- Part 1: What is Transfer Learning?
 - Three views on Transfer Learning, Related Learning Strategies
- Part 2: A type of TL: What is Multi-Task Learning?
 - What and Why, Perspectives on MTL
 - Short hands-on tutorial with MaChAmp
- Part 3: Selected Case Studies
 - Applications to Multilinguality, Transferability Estimation, Human Label Variation
- Outro

Part 2: What is Multi-Task Learning (MTL)?

Views on MTL and Why

Typical single-task learning

Can we do better?

Example: Learning how to drive a motorbike

main tas

auxiliary task

Multi-task Learning (MTL): Key Idea

singlietasklæarning((\STL)

* sometimes auxiliary task might be equally important

MTL in Neural Networks (NNs): shared encoder, task-specific heads

output

shared

input

MTL Recipe illustrated

Data

Sample task:

- 1. Select the next task.
- 2. Select a random training example for this task.
- 3. Update the NN for this task by taking a gradient step with respect to this example.
- 4. Go to 1.

(Collobert & Weston, 2008, ICML)

Architecture

Training

 Scientific view: jointly solving related problems to work towards more general language understanding

Practical view: *simpler* model able to handle multiple tasks, which generalises better and is more efficient in learning

Why does MTL help generalise? (1/2)

- Attention focusing (Caruana, 1997): reduced net capacity improves generalisation
- Example: ALVINN self-driving car

Single Task Leaning

MultiTask Learning

Figure 4: NAVLAB, the CMU autonomous navigation test vehicle.

CMU Alvinn MTL (Caruana 1998)

Why does MTL help generalise? (2/2)

Representation bias (Caruana, 1997) - MTL prefers solutions which other tasks prefer, acts as a **regulariser**

Low error for task A

Low error for task B

Why does MTL help efficiency? (1/3)

through task B, which is hard to learn via task A

Eavesdropping (Caruana, 1997) - eavedrop on shared representation to learn feature G

Why does MTL help efficiency? (2/3)

Faster convergence through learning tasks in parallel

(Collobert & Weston, 2008, ICML)

wsz=15

Why does MTL help efficiency? (3/3)

Replaces traditional pipelines with a single model for faster inference - Example from biomedical event extraction - Traditional pipeline:

Linearisation (cast as seq. labelling problem) + MTL = **BeeSL**

(Ramponi, van der Goot, Lombardo, Plank, EMNLP, 2020)

Biomedical **E**vent **E**xtraction as **S**equence **L**abeling

BeeSL: gains in accuracy + speed

(Ramponi, van der Goot, Lombardo, Plank, EMNLP, 2020)

Example MTL Dependency Parser: 75 languages, 4 tasks, one model: UDify

75 Languages, 1 Model: Parsing Universal Dependencies Universally Lan Kongratyuk Cana and Ivinan Straka Charles University, Institute of Formal and Applied Linguistics 20 and Their constitute Descent of Computational Linguistics ¹Charles University, Institute or Formal and Applied Linguistics ²Saarland University, Department of Computational Linguistics dankondratyuk@gmail.com, straka@ufal.mff.cuni.cz

EMNLP, 2019

Perspectives on MTL

MTL: learning from distinct views

e.g., predict data properties (Plank et al., 2016 ACL), predict other data views like discourse tree views (Braud et al. 2016 CoNLL), predict other layers like syntax tree layers (Kondratuk & Straka, 2019 EMNLP)

MTL: learning from distinct sources e.g., from other languages but also more remote sources like

cognitive human data (gaze, keystrokes) (Klerke et al. 2016 NAACL), (Plank 2016 COLING), (Barrett & Hollenstein, 2020)

Auxiliary

Today: MTL everywhere!

First MTL wave (2016-2017)

Self-supervised MTL objectives: MLM + NSP

... and Multi-task Fine-Tuning using BERT & co

MT-DNN by Liu et al., ACL 2019

Outline

- Introduction: Why Transfer? Dimensions of Language Variation
- Part 1: What is Transfer Learning?
 - Three views on Transfer Learning, Related Learning Strategies
- Part 2: A type of TL: What is Multi-Task Learning?
 - What and Why, Perspectives on MTL
 - Short hands-on tutorial with MaChAmp
- Part 3: Selected Case Studies
 - Applications to Multilinguality, Transferability Estimation, Human Label Variation
- Outro

76

Massive Choice, Ample Tasks: MaChAmp

An easy-to-use (MTL) toolkit

MaChAmp

- Ease of use (all based on simple configuration files)
- Support many tasks (classification, sequence labelling, pairwise sentence classification, dependency parsing..)
- Ease of switching underlying LM encoder
- Multi-task learning via configuration files

One arm alone can move mountains.

Architecture

Configuration and Training of a single task

Configuration file:

```
{
    "UD": {
        "train_data_path": "data/ewt.train",
        "validation_data_path": "data/ewt.dev",
        "word_idx": 1,
        "tasks": {
            "upos": {
                "task_type": "seq",
                "column_idx": 3
            }
}
```

Training:

python3 train.py --dataset_config upos.json

newdoc id = weblog-juancole.com_juancole_20051126063000_ENG_20051126_063000 sent_id = weblog-juancole.com_juancole_20051126063000_ENG_20051126_063000-0001 tent = Al-Zaman : American forces killed Shaikh Abdullah al-Ani, the preacher at the mosque in the te

	A1	PROPN	NNP	Number=3	Sing	0	root	_	SpaceAft	te r=No	
	-	PUNCT	HYPH	_	1	punct	_	SpaceAft	er=No		
man	Zaman	PROPN	NNP	Number=	Sing	1	flat	_	_		
	:	PUNCT	:	_	1	punct	_	_			
nericar	ı	americar	า	ADJ	JJ	Degree=P	os	6	amod	_	_
orces	force	NOUN	NNS	Number=	Plur	7	nsubj	_	_		
lled	kill	VERB	VBD	Mood=Ind	d Tense=P	Past∣Verb	Form=Fir	1 I	1	parataxi	is
aikh	Shaikh	PROPN	NNP	Number=	Sing	7	obj	_	_		
dullah	ı	Abdullah	า	PROPN	NNP	Number=S	Sing	8	flat	_	_
	al	PROPN	NNP	Number=	Sing	8	flat	_	SpaceAft	ter=No	
	-	PUNCT	HYPH	_	8	punct	_	SpaceAft	ter=No		
ni	Ani	PROPN	NNP	Number=2	Sing	8	flat	_	SpaceAft	ter=No	
	,	PUNCT	,	_	8	punct	_	_			
ie	the	DET	DT	Definit	e=DeflPro	nType=Ar	't	15	det	_	_
eacher	n	preacher	n	NOUN	NN	Number=S	Sing	8	appos	_	_
_	0±		Th		10	0000					

Configuration and Training of two tasks (e.g. coarse and fine POS)

• Configuration file:

```
{
    "UD": {
        "train_data_path": "data/ewt.train",
        "validation_data_path": "data/ewt.dev",
        "word_idx": 1,
        "tasks": {
            "upos": {
                "task_type": "seq",
                "column_idx": 3
            },
            "xpos": {
                "task_type": "seq",
                "column_idx": 4,
                "prev_task_embed_dim":32,
                "order":2
```

Task types:

- <u>seq</u>: standard sequence labeling.
- <u>string2string</u>: same as sequence labeling, but learns a conversion from the original word to the instance, and uses that as label (useful for lemmatization).
- <u>seq_bio</u>: a masked CRF decoder enforcing complying with the BIO-scheme.
- <u>multiseq</u>: a multilabel version of seq: multilabel classification on the word level
- <u>multiclas</u>s: a multilabel version of classification: multilabel classification on the utterance level.
- <u>dependency</u>: dependency parsing.
- <u>classification</u>: sentence classification, predicts a label for N utterances of text.
- <u>mlm</u>: masked language modeling.
- <u>regression</u>: to predict (floating point) numbers

Results to Udify

• More details in van der Goot et al., 2021 EACL

			EWT v2.3	3				PMB v3.0)	
Task	dep	feats	lemma	upos	xpos	lemma	semtag	supertag	verbnet	wordnet
Task type	dep	seq	s2s	seq	seq	s2s	seq	seq	seq	s2s
Train size			205k					43k		
MACHAMP(ST)	89.90	97.18	98.21	97.01	96.64	97.52	98.32	94.87	94.37	89.15
MACHAMP(MT)	89.61	97.15	97.79	97.01	96.79	97.33	98.23	94.91	94.54	89.32
UDify	89.67	97.15	97.80	96.90	_	_	_	—	_	—

More info on MaChAmp

- Website with code, documentation: <u>https://machamp-nlp.github.io/</u>
- MaChAmp Colab tutorial (short, check out the documentation above): https://colab.research.google.com/drive/1zkowQPeiQMgKnEmKITjccTRvtfdpGfEH
- Slack channel and GitHub issues, see website for more information

Outline

- Introduction: Why Transfer? Dimensions of Language Variation
- Part 1: What is Transfer Learning?
 - Three views on Transfer Learning, Related Learning Strategies
- Part 2: A type of TL: What is Multi-Task Learning?
 - What and Why, Perspectives on MTL
 - Short hands-on tutorial with MaChAmp
- Part 3: Selected Case Studies
 - Applications to Multilinguality, Transferability Estimation, Human Label Variation
- Outro

Applications to Multilinguality

Selected Case Studies

From Masked-Language Modeling to Translation: Non-English Auxiliary Tasks Improve Zero-Shot Spoken Language Understanding

Rob van der Goot, Ibrahim Sharaf, Aizhan Imankulova, Ahmet Üstün, Marija Stepanovic, Alan Ramponi, Siti Orzya Khairunnisa, Mamoru Komachi, Barbara Plank

*as of March, 2020

Task: Slot and Intent Detection

Intent: SearchScreeningEvent

I'd like to see the showtimes for Silly Movie 2.0 at the movie house

Task: Slot and Intent Detection

Slots:

Intent: SearchScreeningEvent

How can we transfer knowledge to low-resource languages?

Cross-lingual transfer: Two kinds of approaches

annotation transfer

(e.g. annotation projection, translation)

model transfer

(e.g. representation transfer like multilingual embeddings, delexicalization)

Idea: Non-English Auxiliary Tasks

Non-English Auxiliary Tasks

Raw data: Masked language modelling (aux-mlm)

Parallel data: Neural machine translation (aux-nmt)

Parsing data: UD parsing (aux-ud)

ar	فيلم Silly Movie 2.0 في د <mark>ار السينما</mark>
da	Jeg vil gerne se spilletiderne for Silly
de	Ich würde gerne den Vorstellungsbeg
de-st	I mecht es Programm fir Silly Movie
en	I'd like to see the showtimes for Silly
id	Saya ingin melihat jam tayang untuk
it	Mi piacerebbe vedere gli orari degli s
ja	<mark>映画館</mark> の Silly Movie 2.0 の上映時
kk	Мен Silly Movie 2.0 бағдарламасы
nl	Ik wil graag de speeltijden van Silly
sr	Želela bih da vidim raspored prikaziva
tr	Silly Movie 2.0'ın sinema salonunda
zh	我想看 Silly Movie 2.0 在 影院 的

★ Data, code: <u>https://bitbucket.org/robvanderg/xsid</u>

Experiments

- Baselines:
 - Baseline (mBERT): joint intent + slot prediction (MaChAmP, van der Goot et al., 2021)
 - (map slots with attention)

Figure 2: Overview of the baseline model.

Strong baseline (nmt-transfer): NTM (translate training data to target language) + annotation projection

Results on Slots - Main take-away

mBERT lang2vec	en	de-st	de 0.18	da 0.18	nl 0.19	it 0.22	sr 0.23	id 0.24	ar 0.30	zh 0.33	kk 0.37	tr 0.38	ja * Avg. 0.41
Slots													
base nmt-transfer	9 7.6	48.5 50.9	33.0 34.5	73.9 60.8	80.4 63.7	75.0 51.0	67.4 41.3	71.1 54.2	45.8 48.2	72.9 27.9	48.5 0.2	55.7 52.0	59.9 61.0 45.0 44.1
aux-mlm	97.3	53.0	34.6	75.9	82.2	78.0	63.8	69.5	4 8 .1	69.4	51.3	58.4	63.5 62.3
aux-nmt aux-ud	0.0 97.5	44.5 47.6	33.3 29.1	71.4 73.7	76.9 73.3	71.9 61.8	58.5 56.8	62.9 61.1	38.7 42.6	70.3 64.9	38.2 45.2	50.2 53.8	58.7 56.3 47.6 54.8

(More results in the paper)

How much training resources (time)?

Model base nmt-transfe aux-mlm aux-nmt

aux-ud

Table 5: Average minutes to train a model, averaged over all languages and both embeddings. For nmt-transfer we include the training of the NMT model.

	Time (minutes)	
	3	-
er	5,145	
	220	
	464	
	57	

Take-aways

da	Jeg vil gerne se spilletiderne for Silly Movie 2.0 i biogra
de	Ich würde gerne den Vorstellungsbeginn für Silly Movie 2
de-st	I mecht es Programm fir Silly Movie 2.0 in Film Haus
en	I'd like to see the showtimes for Silly Movie 2.0 at the
id	Saya ingin melihat jam tayang untuk Silly Movie 2.0 di
it	Mi piacerebbe vedere gli orari degli spettacoli per Silly N
ja	映画館の Silly Movie 2.0 の上映時間を見せて。
kk	Мен Silly Movie 2.0 бағдарламасының кинотеатрда
nl	Ik wil graag de speeltijden van Silly Movie 2.0 in het fi
sr	Želela bih da vidim raspored prikazivanja za Silly Movie i
tr	Silly Movie 2.0'ın sinema salonundaki seanslarını görme
zh	我相看 Silly Movie 20 在影踪 的放映

 \mathbf{a} Let us know if you would like to contribute a new language variant!

particularly for a low-resource dialect (South Tyrolean)

Limitation: sharing via MTL helped only in limiting degrees

Slot and Intent Detection dataset (xSID) and annotation guidelines released, xSID is growing: Bernese Swiss German and Neapolitan added in VarDial (Aepli et al. 2023)

MLM auxiliary task was most robust (similar to DAPT but across languages), and help

mamy@itu.dk, robv@itu.dk, bapl@itu.dk

Genre as Weak Supervision for Cross-lingual Dependency Parsing Max Müller-Eberstein and Rob van der Goot and Barbara Plank Department of Computer Science IT University of Copenhagen, Denmark

EMNLP, 2021

Genre Distribution in Universal Dependencies (UD)

Parser

Target

Universal Dependencies

Müller-Eberstein, van der Goot, and Plank (2021b)

200 TREEBANKS

Nivre et al. (2020); Statistics as of version 2.8

114 LANGUAGES

1.51M SENTENCES

Universal Dependencies Genre Meta-data

What's (not) in a corpus?

UD Treebanks

Genre as Weak Supervision for Cross-lingual Dependency Parsing

Müller-Eberstein, van der Goot, and Plank (2021a)

Universal Dependencies

(no instance genre labels)

Proxy Data

(weakly genre-labelled)

Target Data (zero-shot language)

104

Genre as Weak Supervision for Cross-lingual Dependency Parsing

Sort by size (lowest first).

Data Selection Results

.

Less is more.

TARGET

50.3

106

Genre as Weak Supervision for Cross-lingual Dependency Parsing

Left: genre in mBERT. Right: genre-tuned mBERT via weak supervision.

Applications to Transferability Estimation

Subspaces for Performance Prediction
Which Large Pre-Trained LM to pick?

EMNLP, 2022

Which Large Pre-Trained LM to pick?

- to pick a pre-trained LM
 - Fine-tuning with all is infeasible (and not sustainable)
 - Today's LM choice is largely based on heuristics
- **Question**: Given an NLP task, to what extent can we estimate the transferability of pre-trained LMs to specific NLP tasks, a-priori (without fine-tuning?)
- Prior work on this in NLP is limited; Some distantly related work on performance prediction not on LLM choice though (e.g. Xia et al., 2020; Ye et al., 2021)

Problem: LLMs are appearing at an incredible pace. It becomes increasingly difficult

Transferability Estimation

- Problem setup: Given L pre-trained language models and a dataset D, estimate a score for each language model without fine-tuning on D
 - Use the obtained rank to select the best LLM encoder
 - As ranking function, we use the LogMe framework proposed in Computer Vision (You et al., 2021) - an iterative process that draws lightly parametrised Gaussian distributions to estimate the fit of the LM to the dataset D
- We evaluate model ranking across 10 tasks of two kinds (classification, structured prediction) using 4 setups and 7 LLMs (general, domain-specific)
- We compare it to human experts (12 NLP researchers)

Transferability Estimation: Results

Blue: classification tasks, Orange: sequence labelling tasks

Y-axis: Task performance

Vs Human Performance

- Task turns out to be difficult for humans
 - No single participant was the expert in all setups
- Wider range of correlation:
 - LogME range of τ is in [-0.20; 1.00]; Human rankings fall into a wider range of [-0.54; 1.00], higher uncertainty.
- Benefit of LogMe: provides a continuous scale, humans ranks offer no indication of relative performance differences
- Take-Away: Evidence > human-intuition for a-priori LM ranking
- Limitation: limited (12) human rankings, generalisability beyond the task sample?

What about dependency parsing?

Probing for labeled dependency trees

Müller-Eberstein, van der Goot, and Plank (2022b)

Sort by Structure: Language Model Ranking as Dependency Probing

9 languages, 22 LMs, 46 setups.

Arabic	English	Finnish	Anc. Greek	Hebrew	Korean	Russian	Swedish	Chinese
mBERT	mBERT	mBERT	mBERT	mBERT	mBERT	mBERT	mBERT	mBERT
XLM-R	XLM-R	XLM-R	XLM-R	XLM-R	XLM-R	XLM-R	XLM-R	XLM-R
RemBERT	RemBERT	RemBERT	RemBERT	RemBERT	RemBERT	RemBERT	RemBERT	RemBERT
AraBERT	BERT	BERT-FI	BERT-GRC	א-BERT	BERT-KO	RuBERT	BERT-SV	BERT-ZH
BERT-AR	RoBERTA	BERT-fi	BERT-EL		RoBERTA-KO	RuBERTa		BERT-ZH WWM
					BERT-KOR	RoBERTA-RU		RoBERTA-ZH WWM

Sort by Structure: Language Model Ranking as Dependency Probing

LAS of DEPPROBE in relation to BAP

mamy@itu.dk, robv@itu.dk, b.plank@lmu.de

EMNLP, 2022

Introspection: What is captured in contextualised embeddings?

- Probing has developed into a widely-used toolkit (e.g. Conneau et al., 2018; Hewitt & Manning, 2019; Tamkin et al., 2020)
- Linguistic information is encoded at varying timescales (subwords, phrases etc) and levels (syntax, semantics etc).
- **Question**: To what extent do multilingual representations capture linguistic properties at different time-scales?

—> Spectral Probing as a into large LLMs

Take-Away: Spectral probes rediscover the linguistic hierarchy

Figure 2: Monolingual Results on PTB and 20News. ACC of unfiltered (ORIG), low (L), mid-low (ML), mid (M), mid-high (MH), high (H), and the spectral probe's automatic filters (AUTO) with frequency weightings.

Figure 3: **Spectral Profiles** of all tasks (weight per frequency), with lower and upper bounds across languages.

Applications to Human Label Variability

Often there exists no ground truth

The "Problem" of Human Label Variation: On Ground Truth in Data, Modeling and Evaluation

Center for Information and Language Processing (CIS), MaiNLP lab, LMU Munich, Germany Munich Center for Machine Learning (MCML), Munich, Germany b.plank@lmu.de

Joris Baan¹, Wilker Aziz¹, Barbara Plank^{2,3,4}, Raquel Fernández¹ ¹University of Amsterdam, ²IT University of Copenhagen, ³MCML Munich, ⁴LMU Munich {j.s.baan,w.aziz,raquel.fernandez}@uva.nl,b.plank@lmu.de

Barbara Plank

&

Stop Measuring Calibration When Humans Disagree

Multiple human annotations

Can we turn disagreement into advantage?

Disagreement in human annotation is ubiquitous

— This impacts all 3 stages of the NLP pipeline.
— Human disagreement is one important form of uncertainty.

Disagreement or variation?

- variation in annotation (Plank, 2022 EMNLP)
 - cannot all hold
 - To reconcile different notions in the literature ('human
- In contrast: annotation errors

I propose to call it Human label variation (HLV) = plausible

Preferred over 'disagreement' as that implies two or more views

uncertainty', 'perspectives', 'hard cases', 'disagreement' etc)

Soft-labels via Multi-Task Learning: Auxiliary task for "human distribution"

(Fornaciari, Uma, Paul, Plank, Hovy, Poesio 2021 NAACL)

Gold label + Soft label

Results

Accuracy Stemming

Learning with Human Label Variation

- Soft-label MTL is only one way to use MTL
- Alternative: Davani et al. (2021) who model each annotator separately as output head in a MTL model (instead of one head with the "human distribution")
- Many more approaches to learn with Human Label Variation (see survey in Uma et al., 2021 JAIR)

Is Human Label Variation So Bad? No.

It provides opportunities for more trustworthy, human-facing Al.

More trustworthy models: Calibration & Model Uncertainty

classifier knows when it does not know

Calibration is a popular framework to evaluate whether a

However, calibration assumes there exists a ground truth

We examine calibration under the lens of human label variation

Calibration to majority is flawed

(ECE). But what does that mean?

(Baan, Aziz, Plank, Fernandez, 2022 EMNLP) https://arxiv.org/abs/2210.16133

Temperature Scaling improves typical calibration measures

With instance-level distributions we get a more fine-grained view on model calibration (TVD distance; Baan et al., 2022)

Fewer extremely miscalibrated

BUT even fewer perfectly calibrated instances!

Outline

- Introduction: Why Transfer? Dimensions of Language Variation
- Part 1: What is Transfer Learning?
 - Three views on Transfer Learning, Related Learning Strategies
- Part 2: A type of TL: What is Multi-Task Learning?
 - What and Why, Perspectives on MTL
 - Short hands-on tutorial with MaChAmp
- Part 3: Selected Case Studies
 - Applications to Multilinguality, Transferability Estimation, Human Label Variation
- Outro

Some selected advances in traditional MTL

 MTL & knowledge distillation (Clark et al., 2019)

 MTL & continual learning (Sanh et al. 2019; Sun et al., 2020)

 MTL & adapters via shared hypernetworks (Mahabadi et al., 2021, Üstün et al., 2022)

adapter parameters

Scaling up seems one key finding for MTL

- Scaling up and using many in-between tasks was key

Pre-Fine tuning (Aghajanyan et al., 2021): MTL between pre-training and fine-tuning

Multi-task learning in light of T5, ChatGPT etc: Not just approaches and models change, also our terminology!

Traditional notion of few-shot learning

Slide by Beltagy et al., ACL 2022 tutorial

Recent notion of few-shot learning

Slide by Beltagy et al., ACL 2022 tutorial

"Learning many tasks" takes on new meanings, too (e.g. FLAN)

Wei et al., 2022

Figure 2: Comparing instruction tuning with pretrain–finetune and prompting.

What is a task?

To wrap up...

To wrap up

- Scarce and biased data are ubiquitous
- We have seen applications of:
 - Data selection
 - Multi-Task Learning
 - Probing
 - **Performance Prediction**
 - Human Label Variation and Calibration

Transfer Learning is broad! Sequential TL (pre-training) is just one kind

N 48° 9′ 8.676″

° 34′ 49.33

Questions? Thanks!

@barbara_plank b.plank@lmu.de

Research support by:

IT UNIVERSITY OF COPENHAGEN

145